Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Psychiatry ; 28(9): 3816-3828, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37845494

RESUMO

Maternal care is critical for epigenetic programming during postnatal brain development. Stress is recognized as a critical factor that may affect maternal behavior, yet owing to high heterogeneity in stress response, its impact varies among individuals. We aimed here to understand the connection between inborn stress vulnerability, maternal care, and early epigenetic programming using mouse populations that exhibit opposite poles of the behavioral spectrum (social dominance [Dom] and submissiveness [Sub]) and differential response to stress. In contrast to stress-resilient Dom dams, stress-vulnerable Sub dams exhibit significantly lower maternal attachment, serum oxytocin, and colonic Lactobacillus reuteri populations. Sub offspring showed a reduced hippocampal expression of key methylation genes at postnatal day (PND) 7 and a lack of developmentally-dependent increase in 5-methylcytosine (5-mC) at PND 21. In addition, Sub pups exhibit significant hypermethylation of gene promoters connected with glutamatergic synapses and behavioral responses. We were able to reverse the submissive endophenotype through cross-fostering Sub pups with Dom dams (Sub/D). Thus, Sub/D pups exhibited elevated hippocampal expression of DNMT3A at PND 7 and increased 5-mC levels at PND 21. Furthermore, adult Sub/D offspring exhibited increased sociability, social dominance, and hippocampal glutamate and monoamine levels resembling the neurochemical profile of Dom mice. We postulate that maternal inborn stress vulnerability governs epigenetic patterning sculpted by maternal care and intestinal microbiome diversity during early developmental stages and shapes the array of gene expression patterns that may dictate neuronal architecture with a long-lasting impact on stress sensitivity and the social behavior of offspring.


Assuntos
Mães , Comportamento Social , Humanos , Feminino , Animais , Camundongos , Hipocampo/metabolismo , Comportamento Materno/fisiologia , Predomínio Social
2.
Front Pharmacol ; 14: 1234332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663250

RESUMO

Rationale: The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness. Methods: A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice. The endocannabinoid showing the greatest difference in concentration in the brain between the groups, docosatetraenoyl ethanolamine (DEA), was synthesized, and its effects on the physiological and behavioral responses of Dom and Sub mice were evaluated. mRNA expression of the endocannabinoid receptors and enzymes involved in PUFA biosynthesis was assessed using qRT-PCR. Results: Targeted LC/MS analysis revealed that long-chain polyunsaturated ethanolamides including arachidonoyl ethanolamide (AEA), DEA, docosatrienoyl ethanolamide (DTEA), eicosatrienoyl ethanolamide (ETEA), eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) were higher in the Sub compared with the Dom mice. Untargeted LC/MS analysis showed that the parent fatty acids, docosatetraenoic (DA) and eicosapentaenoic (EPA), were higher in Sub vs. Dom. Gene expression analysis revealed increased mRNA expression of genes encoding the desaturase FADS2 and the elongase ELOVL5 in Sub mice compared with Dom mice. Acute DEA administration at the dose of 15 mg/kg produced antinociceptive and locomotion-inducing effects in Sub mice, but not in Dom mice. Subchronic treatment with DEA at the dose of 5 mg/kg augmented dominant behavior in wild-type ICR and Dom mice but not in Sub mice. Conclusion: This study suggests that the endocannabinoid system may play a role in the regulation of dominance and submissiveness, functional elements of social behavior and personality. While currently we have only scratched the surface, understanding the role of the endocannabinoid system in personality may help in revealing the mechanisms underlying the etiopathology of psychiatric disorders.

3.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445911

RESUMO

The role of hippocampal monoamines and their related genes in the etiology and pathogenesis of depression-like behavior, particularly in impaired sociability traits and the meaning of changes in USVs emitted by pups, remains unknown. We assessed the effects of prenatal administration of S-adenosyl-methionine (SAMe) in Sub mice that exhibit depressive-like behavior on serotonergic, dopaminergic and noradrenergic metabolism and the activity of related genes in the hippocampus (HPC) in adulthood in comparison to saline-treated control Sub mice. During postnatal days 4 and 8, we recorded and analyzed the stress-induced USVs emitted by the pups and tried to understand how the changes in the USVs' calls may be related to the changes in the monoamines and the activity of related genes. The recordings of the USVs showed that SAMe induced a reduction in the emitted flat and one-frequency step-up call numbers in PND4 pups, whereas step-down type calls were significantly increased by SAMe in PND8 pups. The reduction in the number of calls induced by SAMe following separation from the mothers implies a reduction in anxiety, which is an additional sign of decreased depressive-like behavior. Prenatal SAMe increased the concentrations of serotonin in the HPC in both male and female mice without any change in the levels of 5HIAA. It also decreased the level of the dopamine metabolite DOPAC in females. There were no changes in the levels of norepinephrine and metabolites. Several changes in the expression of genes associated with monoamine metabolism were also induced by prenatal SAMe. The molecular and biochemical data obtained from the HPC studies are generally in accordance with our previously obtained data from the prefrontal cortex of similarly treated Sub mice on postnatal day 90. The changes in both monoamines and their gene expression observed 2-3 months after SAMe treatment are associated with the previously recorded behavioral improvement and seem to demonstrate that SAMe is effective via an epigenetic mechanism.


Assuntos
Depressão , Hierarquia Social , Gravidez , Camundongos , Animais , Feminino , Masculino , Depressão/genética , Vocalização Animal , Hipocampo/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , S-Adenosilmetionina/metabolismo
4.
Obesity (Silver Spring) ; 31(8): 2043-2056, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37318065

RESUMO

OBJECTIVE: Chronic stress promotes obesity and metabolic comorbidities. The ability of individuals to cope with stress may serve as an important parameter in the development of obesity-related metabolic outcomes. The aim of this study was to clarify whether differences in stress response affect metabolic health under obesity. METHODS: The study was performed in a selectively bred mouse model of social dominance (Dom) and submissiveness (Sub), which exhibit stress resilience or vulnerability, respectively. Mice were given a high-fat diet (HFD) or standard diet, followed by physiological, histological, and molecular analyses. RESULTS: The HFD caused hyperleptinemia, glucose intolerance, insulin resistance, steatosis of the liver and pancreas, and brown adipose tissue whitening in Sub mice, whereas Dom mice were protected from these consequences of the HFD. The HFD increased circulating levels of interleukin (IL)-1ß and induced the expression of proinflammatory genes in the liver and in epididymal white adipose tissue of Sub mice, with no changes in Dom mice. The Cox2 inhibitor celecoxib (15 mg/kg/d) reduced serum IL-1ß, improved glucose tolerance and insulin sensitivity, and prevented hepatic and brown adipose tissue whitening in HFD-fed Sub mice. CONCLUSIONS: The extent of stress resiliency is associated with inflammation and contributes to population heterogeneity in the development of healthy or unhealthy obesity.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/prevenção & controle , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Resistência à Insulina/fisiologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233200

RESUMO

Reduction in the levels of monoamines, such as serotonin and dopamine in the brain, were reported in patients and animals with depression. SAMe, a universal methyl donor and an epigenetic modulator, is successfully used as an adjunct treatment of depression. We previously found that prenatal treatment with SAMe of Submissive (Sub) mice that serve as a model for depression alleviated many of the behavioral depressive symptoms. In the present study, we treated pregnant Sub mice with 20 mg/kg of SAMe on days 12-15 of gestation and studied the levels of monoamines and the expression of genes related to monoamines metabolism in their prefrontal cortex (PFC) at the age of 3 months. The data were compared to normal saline-treated Sub mice that exhibit depressive-like symptoms. SAMe increased the levels of serotonin in the PFC of female Sub mice but not in males. The levels of 5-HIAA were not changed. SAMe increased the levels of dopamine and of DOPAC in males and females but increased the levels of HVA only in females. The levels of norepinephrine and its metabolite MHPG were unchanged. SAMe treatment changed the expression of several genes involved in the metabolism of these monoamines, also in a sex-related manner. The increase in several monoamines induced by SAMe in the PFC may explain the alleviation of depressive-like symptoms. Moreover, these changes in gene expression more than 3 months after treatment probably reflect the beneficial effects of SAMe as an epigenetic modulator in the treatment of depression.


Assuntos
Dopamina , Serotonina , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Catecolaminas/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Dopamina/metabolismo , Epigênese Genética , Feminino , Hierarquia Social , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Metoxi-Hidroxifenilglicol , Camundongos , Norepinefrina/metabolismo , Solução Salina , Serotonina/metabolismo
6.
PLoS One ; 17(8): e0272646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001536

RESUMO

A wearable body hydration sensor employing photoplethysmographic and galvanic biosensors was field evaluated using 240 human participants with equal numbers of men and women volunteers. Monitoring of water mass loss due to perspiration was performed by medical balance measurements following one of two different treadmill physical exercise regimens over 90 minutes in 15-minute intervals with intervening 10-minute rest periods. Participants wore two different models of the dehydration body monitor device mated to commercially-available smartwatches (Samsung Gear S2 and Samsung Gear Fit2). Device output was recorded by Bluetooth wireless link to a standard smartphone in 20-second blocks. Comparison of the devices with the standard measurement method (change in body mass measured by medical balance) indicated very close agreement between changes in body water mass and device output (percent normalized mean root square error averaged approximately 2% for all participants). Bland-Altman analyses of method agreement indicated that <5% of participant values fell outside of the 95% confidence interval limits of agreement and all measured value differences were normally distributed around the line of equality. The results of this first-ever field trial of a practical, wearable hydration monitor suggests that this device will be a reliable tool to aid in geriatric hydration monitoring and physical training scenarios.


Assuntos
Teste de Esforço , Dispositivos Eletrônicos Vestíveis , Idoso , Exercício Físico , Feminino , Humanos , Masculino , Monitorização Fisiológica/métodos , Smartphone
7.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806255

RESUMO

Interferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required. The potential use of peptides as anti-inflammatory agents has been previously demonstrated. Our team discovered, and previously published, a 9-amino-acid cyclic peptide named ALOS4 which exhibits anti-cancer properties in vivo and in vitro. We suggested that the anti-cancer effect of ALOS4 arises from interaction with the immune system, possibly through the modulation of inflammatory processes. Here, we show that treatment with ALOS4 decreases basal cytokine levels in mice with chronic inflammation and prolongs the lifespan of mice with acute systemic inflammation induced by irradiation. We also show that pretreatment with ALOS4 reduces the expression of IFN alpha, IFN lambda, and selected interferon-response genes triggered by polyinosinic-polycytidylic acid (Poly I:C), a synthetic analog of viral double-stranded RNA, while upregulating the expression of other genes with antiviral activity. Hence, we conclude that ALOS4 does not prevent IFN signaling, but rather supports the antiviral response by upregulating the expression of interferon-response genes in an interferon-independent manner.


Assuntos
Interferon-alfa , Interferons , Animais , Antivirais/farmacologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Interferons/genética , Camundongos , Poli I-C/farmacologia
8.
Behav Brain Res ; 427: 113866, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35367299

RESUMO

Epigenetic changes are an important pathogenic mechanism in many diseases, including a variety of psychiatric disorders such as Autism Spectrum Disorder (ASD) and depression. Methyl donors such as S-Adenosyl-Methionine (SAMe) may cause epigenetic modifications, especially during embryonic development when the epigenetic memory is established. We treated pregnant submissive (Sub) mice exhibiting depressive-like phenotype with SAMe during days 12-14 of gestation aiming to alleviate the depressive - like symptoms in their offspring and normalize the expression in their prefrontal cortex of several genes possibly involved in depression. We also aimed to define possible gender differences of the effects of SAMe on the measured parameters. Treatment of the Dams with SAMe did not affect the early neurodevelopmental milestones in males or females. The results of the behavioral tests showed improvement in some behavioral parameters compared to saline treated Sub mice. Several of these improvements were gender related. Prenatal SAMe treatment mainly improved sociability, as observed in the three chambers social interaction test, in both genders. It also improved the increased locomotion (as observed by the open field test) in the female mice, but not in males. Prenatal SAMe increased the expression of Vegfa and Flt1 in males, but not in females. The expression of IgfII and SynIIb increased in males and decreased in females and the expression of serotonin receptor Htr2A did not change in both genders. In our mouse model of depression, prenatal treatment with SAMe significantly improved some parameters of depressive like behavior and normalized the expression of several genes related to depression. The gender differences observed in our studies may explain the sex related differences in the clinical presentation of depression and the different gender related response to treatment.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Comportamento Animal , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hierarquia Social , Humanos , Masculino , Camundongos , Gravidez , S-Adenosilmetionina/farmacologia
10.
Sci Rep ; 12(1): 3647, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256610

RESUMO

Dittrichia viscosa is a perennial Mediterranean plant used in traditional medicine for "calming purposes", pointing at a possible antidepressant activity of the plant. We conducted chromatographic and bioassay-guided fractionation of D. viscosa root extract to isolate a specific fraction (fraction "K") with antidepressant-like characteristics in vivo and strong antioxidant properties in vitro. A single dose of "K" reduced immobility time in the forced swim test with a mouse model possessing a depressive-like phenotype. Neurochemical profiling for 5-hydroxytryptamine (5-HT) and its primary metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in prefrontal cortex and hippocampus of "K"-treated mice showed reduction in 5-HIAA, indicative of either serotonin uptake transporter or monoamine oxidase-A inhibition, as well as slight increases in 5-HT content. These neurochemical alterations, as well as the behavioral changes observed, were comparable to the effects of paroxetine. "K" also protected PC12 cells in a H2O2 cytotoxicity assay, thus demonstrating antioxidant properties, yet paroxetine augmented oxidative damage and cell death. Identification of the main compounds in "K" by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) indicated that chlorogenic acid and cynarine comprised 87% of the total components. D. viscosa root extract appears to produce antidepressant and cytoprotective effects and may serve as an attractive alternative to standard therapies for depression.


Assuntos
Asteraceae , Ácido Clorogênico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antioxidantes/farmacologia , Asteraceae/química , Comportamento Animal , Ácido Clorogênico/farmacologia , Cinamatos , Peróxido de Hidrogênio/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Camundongos , Paroxetina , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Espectrometria de Massas em Tandem
12.
Neurosci Biobehav Rev ; 132: 603-620, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902440

RESUMO

Social interactions for many species of animals are critical for survival, wellbeing, and reproduction. Optimal navigation of a social system increases chances for survival and reproduction, therefore there is strong incentive to fit into social structures. Social animals rely heavily on dominant-submissive behaviors in establishment of stable social hierarchies. There is a link between extreme manifestation of dominance/submissiveness and behavioral deviations. To understand neural substrates affiliated with a specific hierarchical rank, there is a real need for reliable animal behavioral models. Different paradigms have been consolidated over time to study the neurobiology of social rank behavior in a standardized manner using rodent models to unravel the neural pathways and substrates involved in normal and abnormal intraspecific social interactions. This review summarizes and discusses the commonly used behavioral tests and new directions for the assessment of dominance in rodents. We discuss the hierarchy inheritable nature and other critical issues regarding hierarchical rank manifestation which may help in designing social-rank-related studies that serve as promising pre-clinical tools in behavioral psychiatry.


Assuntos
Hierarquia Social , Comportamento Social , Animais , Comportamento Animal , Reprodução , Roedores , Predomínio Social
13.
Brain Behav Immun ; 99: 3-8, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547401

RESUMO

Viral infections during pregnancy are associated with increased incidence of psychiatric disorders in offspring. The pathological outcomes of viral infection appear to be caused by the deleterious effects of innate immune response-associated factors on development of the fetus, which predispose the offspring to pathological conditions in adulthood. The negative impact of viral infections varies substantially between pregnancies. Here, we explored whether differential stress sensitivity underlies the high heterogeneity of immune reactivity and whether this may influence the pathological consequences of maternal immune activation. Using mouse models of social dominance (Dom) and submissiveness (Sub), which possess innate features of stress resilience and vulnerability, respectively, we identified differential immune reactivity to the synthetic analogue of viral double-stranded RNA, Poly(I:C), in Sub and Dom nulliparous and pregnant females. More specifically, we found that Sub females showed an exacerbated pro- and anti-inflammatory cytokine response to Poly(I:C) as compared with Dom females. Sub offspring born to Sub mothers (stress sensitive offspring) showed enhanced locomotory response to the non-competitive NMDA antagonist, MK-801, which was potentiated by prenatal Poly(I:C) exposure. Our findings suggest that inherited stress sensitivity may lead to functional changes in glutamatergic signaling, which in turn is further exacerbated by prenatal exposure to viral-like infection. The maternal immunome seems to play a crucial role in these observed phenomena.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/fisiologia , Citocinas , Modelos Animais de Doenças , Feminino , Camundongos , Poli I-C/farmacologia , Gravidez
14.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502483

RESUMO

We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvß3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvß3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Genomics Proteomics ; 18(3): 335-347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33893086

RESUMO

BACKGROUND/AIM: Germline mutations in PTCH1 or SUFU in the sonic hedgehog (SHH) pathway cause Gorlin's syndrome with increased risk of developing SHH-subgroup medulloblastoma. Gorlin's syndrome precludes the use of radiotherapy (a standard component of treatment) due to the development of multiple basal cell carcinomas. Also, current SHH inhibitors are ineffective against SUFU-mutated medulloblastoma, as they inhibit upstream genes. In this study, we aimed to detect differences in the expression of genes and microRNAs between SUFU- and PTCH1-mutated SHH medulloblastomas which may hint at new treatment directions. PATIENTS AND METHODS: We sequenced RNA and microRNA from tumors of two patients with germline Gorlin's syndrome - one having PTCH1 mutation and one with SUFU mutation - followed by bioinformatics analysis to detect changes in genes and miRNAs expression in these two tumors. Expression changes were validated using qRT-PCR. Ingenuity pathway analysis was performed in search for targetable pathways. RESULTS: Compared to the PTCH1 tumor, the SUFU tumor demonstrated lower expression of miR-301a-3p and miR-181c-5p, matrix metallopeptidase 11 (MMP11) and OTX2, higher expression of miR-7-5p and corresponding lower expression of its targeted gene, connexin 30 (GJB6). We propose mechanisms to explain the phenotypic differences between the two types of tumors, and understand why PTCH1 and SUFU tumors tend to relapse locally (rather than metastatically as in other medulloblastoma subgroups). CONCLUSION: Our results help towards finding new treatable molecular targets for these types of medulloblastomas.


Assuntos
Neoplasias Cerebelares/genética , Mutação em Linhagem Germinativa , Meduloblastoma/genética , MicroRNAs/biossíntese , Receptor Patched-1/genética , RNA Neoplásico/biossíntese , Proteínas Repressoras/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Feminino , Expressão Gênica , Humanos , Masculino , Meduloblastoma/metabolismo , Meduloblastoma/patologia , MicroRNAs/genética , Receptor Patched-1/metabolismo , RNA Neoplásico/genética , Proteínas Repressoras/metabolismo
16.
NPJ Biofilms Microbiomes ; 7(1): 28, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741982

RESUMO

The link between the gut microbiota and social behavior has been demonstrated, however the translational impact of a certain microbiota composition on stable behavioral patterns is yet to be elucidated. Here we employed an established social behavior mouse model of dominance (Dom) or submissiveness (Sub). A comprehensive 16S rRNA gene sequence analysis of Dom and Sub mice revealed a significantly different gut microbiota composition that clearly distinguishes between the two behavioral modes. Sub mice gut microbiota is significantly less diverse than that of Dom mice, and their taxa composition uniquely comprised the genera Mycoplasma and Anaeroplasma of the Tenericutes phylum, in addition to the Rikenellaceae and Clostridiaceae families. Conversely, the gut microbiota of Dom mice includes the genus Prevotella of the Bacteriodetes phylum, significantly less abundant in Sub mice. In addition, Sub mice show lower body weight from the age of 2 weeks and throughout their life span, accompanied with lower epididymis white adipose tissue (eWAT) mass and smaller adipocytes together with substantially elevated expression of inflammation and metabolic-related eWAT adipokines. Finally, fecal microbiota transplantation into germ-free mice show that Sub-transplanted mice acquired Sub microbiota and adopted their behavioral and physiological features, including depressive-like and anti-social behaviors alongside reduced eWAT mass, smaller adipocytes, and a Sub-like eWAT adipokine profile. Our findings demonstrate the critical role of the gut microbiome in determining dominance vs. submissiveness and suggest an association between gut microbiota, the eWAT metabolic and inflammatory profile, and the social behavior mode.


Assuntos
Tecido Adiposo/metabolismo , Bactérias/classificação , Depressão/microbiologia , Análise de Sequência de RNA/métodos , Comportamento Social , Tecido Adiposo/imunologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Comportamento Animal/fisiologia , Peso Corporal , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal , Vida Livre de Germes , Masculino , Camundongos , Filogenia , RNA Ribossômico 16S/genética
17.
J Affect Disord ; 282: 1055-1066, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33601678

RESUMO

BACKGROUND: Dominant-submissive relationships depend upon functionality of the neural circuits involving monoaminergic neurotransmission. Behavioral profiles of selectively bred dominant (Dom) and submissive (Sub) mice have been proposed to mimic hyperthymic- or depressive-like temperaments observed in patients with affective disorders. These mice differentially respond to psychotropic agents and stressful stimuli, however, the mechanisms underlying these differences remain unclear. To address these mechanisms, we analyzed the brain monoamine content and responses to paroxetine (PXT) in Dom and Sub mice. METHODS: The behavioral effects of PXT (3 mg/kg, single injection) were assessed with the Elevated Plus Maze (EPM) and Forced Swim Test (FST). Monoamine tissue content was analyzed by HPLC-ECD. RESULTS: Compared to Dom, Sub mice had decreased levels of serotonin (5-HT) in the brainstem (BS), reduced levels of norepinephrine (NE) in the prefrontal cortex (PFC), hippocampus (HPC), and striatum (STR) and elevated levels of dopamine (DA) in PFC, HPC, STR and BS. In EPM, PXT administration increased locomotion and exploration in Dom mice, with no effect in Sub mice. In FST, PXT disrupted immobility in Dom mice only. The PXT-produced differences in regional monoamine content were strain-dependent and consistent with the behavioral alterations. LIMITATIONS: Chronic PXT treatment, in vivo monoamine assays and sex-dependent analysis were out of the scope of this study and will be performed in the future in order to provide an in-depth evaluation of the neurochemical mechanisms underlying temperament-dependent responses to SSRIs. CONCLUSIONS: Our findings suggest neurochemical mechanisms that underlie temperament-based response to antidepressant treatment.


Assuntos
Neuroquímica , Temperamento , Animais , Comportamento Animal , Encéfalo , Humanos , Camundongos , Comportamento Social
18.
Diagnostics (Basel) ; 11(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466814

RESUMO

Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.

19.
Front Psychiatry ; 11: 602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695029

RESUMO

BACKGROUND: We have recently shown that chronic use of Synthetic Cannabinoids (SCs) has been associated with mood disorders and impairments in executive functions. There is also evidence indicating that chronic SC users have higher rates of comorbidity with depression and psychotic symptoms. Here, we investigate performance on executive function and emotional processing tasks in regular SC users and a measure of schizotypal traits. METHOD: Thirty chronic SC users, 32 recreational cannabis users, and 32 non-using control participants, without history of mental disorder, or current substance abuse diagnosis (mean age 26 ± 4.27 years; 85 males, 9 females), were tested in addiction treatment centers in Israel. Computerized neurocognitive function tests; the N-back task, Go/No-Go task, Wisconsin Sorting Card-like Task (WSCT), and emotional face recognition task and questionnaires of depression, anxiety and schizotypal traits and symptoms were used. RESULTS: SC users have performed worse than recreational cannabis users and non-cannabis users on the N-back working-memory task (lower accuracy) and the WSCT cognitive flexibility task. SC users showed greater schizotypal traits and symptoms compared with recreational cannabis users and non-user control participants. A positive association was found in cannabinoid-user groups between schizotypal traits and symptoms and cognitive and emotional processing measures. Finally, SC users have scored higher on depression and state-trait anxiety measures than recreational cannabis users or healthy control participants. CONCLUSIONS: Repeated use of SCs is associated with impairment in executive functions and emotional processing. These alterations are associated with depression and schizotypal traits and symptoms. This adds to existing evidence on the long-term consequences of SC drugs and their risks for mental health.

20.
Front Psychiatry ; 11: 355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477173

RESUMO

OBJECTIVE: Chronic use of synthetic cannabinoids (SCs) has been associated with a wide range of negative consequences for health including psychotic and affective disturbances. Accumulating evidence indicates that cannabinoids use may be a risk factor for schizophrenia, and chronic natural cannabis users score higher than non-users on measures of schizotypal personality traits. However, little is known regarding the personality characteristics of SC users, especially in comparison with recreational cannabis users and healthy individuals. This study aimed to examine the differences in personality characteristics and schizotypy between SC users, regular cannabis users, and non-users and to compare these measures between groups. METHODS: Forty-two chronic SC users, 39 natural cannabis users, and 47 non-using control participants, without history of mental disorder, or current substance use diagnosis (mean age 26± 4.47 years; 23 females, 105 males), completed the Big-Five Factor Inventory (BFI), the Schizotypal Personality Questionnaire-Brief (SPQ-B), substance use history, rating scales of depression and anxiety, and a demographic questionnaire. RESULTS: On the BFI, SC users scored higher than natural cannabis users and non-users on neuroticism, but lower on agreeableness and extraversion, and endorsed greater schizotypal symptoms on the SPQ-B. In addition, SC users had lower scores on conscientiousness than non-users, and natural cannabis users were more extroverted than non-users. Higher openness and lower conscientiousness predicted schizotypy for both SC and natural cannabis users. Finally, greater neuroticism predicted schizotypy for natural cannabis users, and introversion predicted schizotypy for non-users. CONCLUSIONS: These results show that chronic SC users differ from natural cannabis users and non-users on dimensions of specific personality traits and schizotypy that may indicate psychotic proneness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...